|
|
- DepthAnything Video-Depth-Anything - GitHub
ByteDance †Corresponding author This work presents Video Depth Anything based on Depth Anything V2, which can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability Compared with other diffusion-based models, it enjoys faster inference speed, fewer parameters, and higher consistent depth
- 【EMNLP 2024 】Video-LLaVA: Learning United Visual . . . - GitHub
😮 Highlights Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset
- GitHub - MME-Benchmarks Video-MME: [CVPR 2025] Video-MME: The First . . .
We introduce Video-MME, the first-ever full-spectrum, M ulti- M odal E valuation benchmark of MLLMs in Video analysis It is designed to comprehensively assess the capabilities of MLLMs in processing video data, covering a wide range of visual domains, temporal durations, and data modalities
- Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video . . .
Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding This is the repo for the Video-LLaMA project, which is working on empowering large language models with video and audio understanding capabilities
- GitHub - k4yt3x video2x: A machine learning-based video super . . .
A machine learning-based video super resolution and frame interpolation framework Est Hack the Valley II, 2018 - k4yt3x video2x
- Troubleshoot YouTube video errors - Google Help
Run an internet speed test to make sure your internet can support the selected video resolution Using multiple devices on the same network may reduce the speed that your device gets You can also change the quality of your video to improve your experience Check the YouTube video’s resolution and the recommended speed needed to play the video The table below shows the approximate speeds
- Wan: Open and Advanced Large-Scale Video Generative Models
Wan: Open and Advanced Large-Scale Video Generative Models In this repository, we present Wan2 1, a comprehensive and open suite of video foundation models that pushes the boundaries of video generation Wan2 1 offers these key features:
- Video-R1: Reinforcing Video Reasoning in MLLMs - GitHub
Video-R1 significantly outperforms previous models across most benchmarks Notably, on VSI-Bench, which focuses on spatial reasoning in videos, Video-R1-7B achieves a new state-of-the-art accuracy of 35 8%, surpassing GPT-4o, a proprietary model, while using only 32 frames and 7B parameters This highlights the necessity of explicit reasoning capability in solving video tasks, and confirms the
- VideoLLM-online: Online Video Large Language Model for Streaming Video
Online Video Streaming: Unlike previous models that serve as offline mode (querying responding to a full video), our model supports online interaction within a video stream It can proactively update responses during a stream, such as recording activity changes or helping with the next steps in real time
- Generate Video Overviews in NotebookLM - Google Help
Video Overviews, including voices and visuals, are AI-generated and may contain inaccuracies or audio glitches NotebookLM may take a while to generate the Video Overview, feel free to come back to your notebook later
|
|
英文每年常用名排名 2023 年排名 2022 年排名 2021 年排名 2020 年排名 2019 年排名 2018 年排名 2017 年排名 2016 年排名 2015 年排名 2014 年排名 2013 年排名 2012 年排名 2011 年排名 2010 年排名 2009 年排名 2008 年排名 2007 年排名 2006 年排名 2005 年排名 2004 年排名 2003 年排名 2002 年排名 2001 年排名 2000 年排名
英文名字起源
希伯来 希腊 条顿 印度 拉丁 拉丁语 古英语 英格兰 阿拉伯 法国 盖尔 英语 匈牙利 凯尔特 西班牙 居尔特 非洲 美洲土著 挪威 德国 威尔士 斯拉夫民族 古德语 爱尔兰 波斯 古法语 盎格鲁撒克逊 意大利 盖尔语 未知 夏威夷 中古英语 梵语 苏格兰 俄罗斯 土耳其 捷克 希腊;拉丁 斯干那维亚 瑞典 波兰 乌干达 拉丁;条顿 巴斯克语 亚拉姆 亚美尼亚 斯拉夫语 斯堪地纳维亚 越南 荷兰
|